1. Basics of Quantum
Computing



Goal

* Review of quantum simulation algorithms, with a focus on state-of-the-art methods
and key ideas. N

* | will assume that you are comfortable with the standard quantum mechanics, e.g.,
braket notation, Born rule, etc.

* Today: Basics of Quantum Computation
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Speed of existing quantum computers

Using your laptop, you can perform a 64-bit integer addition in less than a
nanosecond.

Quantum computers available today need at least 10ns~100ns, even microseconds,
to apply a single elementary gate.

One would need 10s of layers of such gates to perform the integer addition, leading to
at least 100~10,000-fold slowdown compared to your laptop.

Everybody is saying that quantum computer is more efficient than a classical
computer. What’s happening here?



Asymptotic Scaling

* While the existing quantum computers are small and slow, technology will eventually
advance, making them larger and faster.

* In that regime, it is important to understand the asymptotic scaling of the time needed
to do the computation.



Example: Shor’s algorithm
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Peter Shor famously came up with the factoring algorithm in 1994.

This algorithm uses at most %ﬁgi@’gi%t where ¢ is a numerical constant and
n is the number of bits in the number you want to factorize.

On the other hand, the best known method usmg a classical computer requires a
number of gates that scales at least ¢” exp(c'n 3).
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To compare their speed in real time, we can multiply by the time to execute the gates.
But this only changes the constant.

Eventually, as n grows, the time needed using quantum gates will be much smaller
than the time needed using only classical gates.
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Asymptotics
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* In computer science, it is very common to use Big-O notations. This is different from
the physics big-O notation.
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Asymptotics: Short summary

* f(n) = O(g(n)): f(n) < cgn).

* f(n) = Q(gn)): f(n) > cg(n).

* f(n) = B©(g(n)): c'g(n) < f(n) < cg(n)
. f(n) = o(g(n)): lim m = 0.
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Time complexity

* The time complexity of an algorithm quantifies the amount of time needed to run the
algorithm.

* Obviously this would be a function of the input size n, and in general will be a
complicated function.

* The big-O notation will be useful to understand the asymptotic scaling of the time
complexity.
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Efficiency

* An algorithm is efficient if its time complexity (and space complexity) is O(n*) for
some k < 0.

ex) An algorithm with the time complexity ofis efficient, even though this

is obviously not practical.

* An algorithm A is more efficient than algorithm B if A has a smaller time complexity
than B.

ex) 10'%% is more efficient than (1 + 10~
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Quantum vs. Classical computing: Similarities

* Bits: 0,1
* Elementary gates: AND, NOT, NAND, ...
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Quantum vs. Classical computing: Similarities

* Qubits: |0),]1)
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* Elementary gates: 1- and 2-qubit gates i
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Quantum vs. Classical computing: Differences

U wt=otoer =g

* Every quantum gate is unitary, hence reversible.
* Not every classical gate is unitary.
* Q1: Can quantum computers do everything that classical computers can do?

* Q2: Can quantum computers provide speedups?
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Reversible computation

* It turns out that reversible computation is possible. (Bennett, 1973)
* Basic idea: Use Toffoli gates : Adts on 3 bits
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* Conclusion: Any efficient classical algorithm can be made reversible whilst
maintaining its efficiency.
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Quantum computation

* Both Toffoli gate and NOT gate can be implemented using 1- and 2-qubit gates.

* Therefore, any efficient classical computation can be done efficiently on a quantum

computer!
PR

* But, quantum computer can do more...



Reversible computation, in superposition
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Q: What about the intermediate results in the computation?
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Trick: Uncomputation

e Goal: Implement | x) |0) — |x) [ f(g(x))) using U(|x}|y)) = |x)|y + f(x)) and
U (Ix)[y) = [x) |y + g(x) . —
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Reversible computation, in superposition

N a0 10) = Y a,lx)]f0)

Fact: Computing f(x) in superposition can be done efficiently on a quantum computer if
f(x) is efficiently computable on a classical computer.



Quantum vs. Classical computing: Differences

* Every quantum gate is unitary, hence reversible.

* Not every classical gate is unitary.

* Q1: Can quantum computers do everything that classical computers can do?
* Q2: Can quantum computers provide speedups?



Quantum speedups

* Exponential speedups: Factoring (Shor), Quantum simulation, ...?

* Polynomial speedups: Database search (Grover), Optimization, Monte Carlo
simulation, ... e
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Summary

* Anything you can do classically efficiently, you can do quantumly efficiently as well.

* There are quantum algorithms which are exponentially faster than classical
algorithms.

* Next lecture: | will be more explicit about the elementary gates.



