1. Basics of Quantum
Computing

Goal

* Review of quantum simulation algorithms, with a focus on state-of-the-art methods
and key ideas. N

* | will assume that you are comfortable with the standard quantum mechanics, e.g.,
braket notation, Born rule, etc.

* Today: Basics of Quantum Computation

Quantum Computing

Participation Affiliation

@ p Barvices A 215
34 1437 |
1 54 Countries Enterprises Scverment Lab 187

n Speak \ Quantum
Practical Quantum e \ Software

Computing o > : 01 5;3
#Q2B20 25 ~— : rcton] 174

= University
157 / Academic
EVENT REPORT 1 Analysts Software
Sessions

QUANTUM RERLW

Community
Growth

Doug Strain | Google g Ethan Hansen | Zapata

Trevor Vincent | Xanadu Sean Welnberg | GC Ware

Google Amazon

Byrne Norman | Honeywell Aleksander Kubica | Amazon

® © €
| % WINNER®
2018 lon@ Aleksander Kubica Amazon
Amazon

@ In-Person Attendees @ Virtual Attendees “Year Over Year Niko Grzeslak | lonG Martin Roetteler | Microsoft

Speed of existing quantum computers

Using your laptop, you can perform a 64-bit integer addition in less than a
nanosecond.

Quantum computers available today need at least 10ns~100ns, even microseconds,
to apply a single elementary gate.

One would need 10s of layers of such gates to perform the integer addition, leading to
at least 100~10,000-fold slowdown compared to your laptop.

Everybody is saying that quantum computer is more efficient than a classical
computer. What’s happening here?

Asymptotic Scaling

* While the existing quantum computers are small and slow, technology will eventually
advance, making them larger and faster.

* In that regime, it is important to understand the asymptotic scaling of the time needed
to do the computation.

Example: Shor’s algorithm

=90 ---7=(-~ o] {
N SM'S f]5q runf (’/\ OCh?) f(h\e

N

Peter Shor famously came up with the factoring algorithm in 1994.

This algorithm uses at most %ﬁgi@’gi%t where ¢ is a numerical constant and
n is the number of bits in the number you want to factorize.

On the other hand, the best known method usmg a classical computer requires a
number of gates that scales at least ¢” exp(c'n 3).

‘\-’V___\'
To compare their speed in real time, we can multiply by the time to execute the gates.
But this only changes the constant.

Eventually, as n grows, the time needed using quantum gates will be much smaller
than the time needed using only classical gates.

& TQ Cﬂ T&>>TC
c. Te ferpCctnl

Asymptotics

O([O") OC[();) Physi cs” Fio-0 ro-€0-Ein

(P~o— = N — —

* In computer science, it is very common to use Big-O notations. This is different from
the physics big-O notation.

— f(n) = O(g(n)): There is a constant ¢ > 0 such that for a sufficiently large n > n,
for some constant ny, f(n) < cg(n).:Vpper tand Jemy= 2 amen+ |

—~ fin) = Q(g(m): fn) > cg(n): Jover ead L cqP 5 km=00n)
— fin) = ©(g(n): c’g(n}(’f)f(n) <80 ¢ e o phrt L0 roragh
L. fin)

= 0(g(n)): lim = = 0. stlepdly

n—oo (N
L= - fi= o (n)

. /s - (
Ranlme & 3N 1 =2noln)

Asymptotics: Short summary

* f(n) = O(g(n)): f(n) < cgn).

* f(n) = Q(gn)): f(n) > cg(n).

* f(n) = B©(g(n)): c'g(n) < f(n) < cg(n)
. f(n) = o(g(n)): lim m = 0.

n—oo £(N

Time complexity

* The time complexity of an algorithm quantifies the amount of time needed to run the
algorithm.

* Obviously this would be a function of the input size n, and in general will be a
complicated function.

* The big-O notation will be useful to understand the asymptotic scaling of the time
complexity.

Sha'c plss b o (Quontusy tire comflexte of)

Efficiency

* An algorithm is efficient if its time complexity (and space complexity) is O(n*) for
some k < 0.

ex) An algorithm with the time complexity ofis efficient, even though this

is obviously not practical.

* An algorithm A is more efficient than algorithm B if A has a smaller time complexity
than B.

ex) 10'%% is more efficient than (1 + 10~

.

5 mknm))

lOO)n

Quantum vs. Classical computing: Similarities

* Bits: 0,1
* Elementary gates: AND, NOT, NAND, ...
o 9 \ NAND (d,‘ﬂ) K” UVHr(/efSP'\
o) I
O | l
[O I

[l O

Quantum vs. Classical computing: Similarities

* Qubits: |0),]1)

Uni Hromg fompreion g
: —>
* Elementary gates: 1- and 2-qubit gates i

m
H‘(Hoﬂf Spree. - H = (2%4 oﬁ“‘(«%}\)=l
(peaicd Rosis seg .)LILBL X (S o0 mhit S‘(—r?@b

= |[--0la-1)
) oA=|| ° A=, -~ Jer~Sn A, —Xq & lLOJ)’)]
U ls&.--'d««--ﬂ@

;ﬂ
gt oote U octhy on quil® ke
= f, ey (U1%?) Pl - A

Quantum vs. Classical computing: Differences

U wt=otoer =g

* Every quantum gate is unitary, hence reversible.
* Not every classical gate is unitary.
* Q1: Can quantum computers do everything that classical computers can do?

* Q2: Can quantum computers provide speedups?

. Oetpit
< 9 " Ao eso)
o o ! 1
(9] [(
| © (

Reversible computation

* It turns out that reversible computation is possible. (Bennett, 1973)
* Basic idea: Use Toffoli gates : Adts on 3 bits

x! 9!

L 09 2 2! 5,92 —» %9 20 AD@Y)
° 0o wi o GG Addichn 0d. 5.
I O o —> f((l) ? B9,z >4y, 2® AND,7)
i; o :'f—‘ ° ° IT 5% 2 ® M) ®MOET) =ty 2
I o(‘(l[Ol i 89,06 ~> 1,9 AND(f/‘f) NAND & AND delbvq b o7

SR
* Conclusion: Any efficient classical algorithm can be made reversible whilst
maintaining its efficiency.

| NAND <— | Tofpi, | fof
6760/\

(‘__\—/_/«’

Quantum computation

* Both Toffoli gate and NOT gate can be implemented using 1- and 2-qubit gates.

* Therefore, any efficient classical computation can be done efficiently on a quantum

computer!
PR

* But, quantum computer can do more...

Reversible computation, in superposition

Y alx)0) = Y a lx) | fx) : R
[Z a,|x) » Z a, | f(x)) = Genewiy inpossibie

g NEND)

X
Toll Tl ()
Ly, O —5 %y, WMD) 145195 [0y — A 19> 1 AND (s)
RS
l %9 e§o,\
PO [0 5 bS5 D6
e (A0 (2 (3y () X S (22 | AM -~
o= R ~— | AND(Z, A)))

Q: What about the intermediate results in the computation?
s Aasip BSOS > S e 5. Ja>Io) (zLMM 1D
Wz 72) AND(Z, AND)))

R —

Trick: Uncomputation

e Goal: Implement | x) |0) — |x) [f(g(x))) using U(|x}|y)) = |x)|y + f(x)) and
U (Ix)[y) = [x) |y + g(x) . —

-

Ug v,
v It
Iy 197 o> 2o b |omYIo) = K 19892 | fomy) —> 8105 [Hues) >

——_———

Reversible computation, in superposition

N a0 10) = Y a,lx)]f0)

Fact: Computing f(x) in superposition can be done efficiently on a quantum computer if
f(x) is efficiently computable on a classical computer.

Quantum vs. Classical computing: Differences

* Every quantum gate is unitary, hence reversible.

* Not every classical gate is unitary.

* Q1: Can quantum computers do everything that classical computers can do?
* Q2: Can quantum computers provide speedups?

Quantum speedups

* Exponential speedups: Factoring (Shor), Quantum simulation, ...?

* Polynomial speedups: Database search (Grover), Optimization, Monte Carlo
simulation, ... e

Cpssfor: O (")
Quoamer: O CD")/L)

Summary

* Anything you can do classically efficiently, you can do quantumly efficiently as well.

* There are quantum algorithms which are exponentially faster than classical
algorithms.

* Next lecture: | will be more explicit about the elementary gates.

